水利行业标准网
文库搜索
切换导航
文件分类
频道
仅15元无限下载
联系我们
问题反馈
文件分类
仅15元无限下载
联系我们
问题反馈
批量下载
(19)国家知识产权局 (12)发明 专利申请 (10)申请公布号 (43)申请公布日 (21)申请 号 202210459457.3 (22)申请日 2022.04.28 (71)申请人 重庆长安汽车股份有限公司 地址 400020 重庆市江北区建新 东路260号 (72)发明人 郝金隆 唐照翔 (74)专利代理 机构 重庆博凯知识产权代理有限 公司 50212 专利代理师 李海华 (51)Int.Cl. G06F 21/62(2013.01) G06V 10/96(2022.01) G06V 20/56(2022.01) G06V 40/16(2022.01) G06V 20/62(2022.01) G06V 10/774(2022.01)G06V 10/82(2022.01) G06N 3/08(2006.01) G06N 3/04(2006.01) G06K 9/62(2022.01) G16Y 20/00(2020.01) G16Y 20/20(2020.01) G16Y 20/40(2020.01) G16Y 40/10(2020.01) G16Y 40/20(2020.01) G16Y 40/50(2020.01) (54)发明名称 一种基于隐私数据保护的智能网联汽车数 据训练方法、 电子设备及计算机可读存 储介质 (57)摘要 本发明公开了一种基于隐私数据保护的智 能网联汽车数据训练方法, 先对历史采集的路试 数据进行标注, 然后进行模型训练, 得到初版模 型, 将初版模型的低层特征提取层部署至车端; 在车端, 针对车端采集的原始数据, 一方面通过 部署的低层特征提取层进行特征提取, 得到低层 次特征数据集并上传到云端; 另 一方面, 对原始 数据进行匿名化处理并上传到云端进行数据标 注; 在云端, 利用上传的数据集和历史数据集对 除低层特征提取层外的其他特征提取层进行训 练并更新; 并将更新后的模型推送给车端进行同 步更新。 本发明在保证数据隐私传递的同时, 解 决了匿名化数据导致算法性能降低的问题, 并在 此基础上构造出算法闭环, 解决模 型迭代更新的 问题。 权利要求书2页 说明书4页 附图1页 CN 114741732 A 2022.07.12 CN 114741732 A 1.一种基于隐私数据保护的智能网联汽车 数据训练方法, 其特 征在于: 包括如下步骤, 1) 初版模型获取; 在云端, 先对历史采集的路试数据进行标注, 然后进行模型训练, 得 到初版模型, 将初版模型的低层特 征提取层部署至车端; 2) 车端原始数据特征提取; 在车端, 针对车端实时或历史采集的原始数据, 通过步骤1) 部署的低层特 征提取层进行 特征提取, 得到原 始数据的低层次特 征数据集并上传到云端; 3) 车端数据脱敏处理; 在车端对原始数据中的关键信息进行匿名化处理, 得到匿名化 数据后上传到云端并进行 数据标注, 得到标注结果数据集; 4) 云端模型更新数据准备; 将步骤3) 标注结果数据集中的数据与步骤2) 低层次特征数 据集中的数据进行一 一对应, 从而形成模型 更新数据集; 5) 模型优化; 在云端, 利用步骤4) 得到的模型更新数据集, 对初版模型中除低层特征提 取层外的其他特征提取层进行训练并更新; 低层特征提取层与更新后的其他特征提取层一 起作为优化后的模型, 并将优化后的模型推送给 车端进行同步更新。 2.根据权利要求1所述的一种基于隐私数据保护的智能网联汽车数据训练方法, 其特 征在于: 步骤4) 中, 在云端, 路试数据通过初版模型中与部署 至车端的低层特征提取层相同 的低层特征提取层进行特征提取, 得到路试数据的低层次特征数据集, 取路试数据的低层 次特征数据集与上传到 云端的原始数据的低层次特征数据两部 分数据的并集, 一起作为步 骤4) 的低层次特 征数据集。 3.根据权利要求1所述的一种基于隐私数据保护的智能网联汽车数据训练方法, 其特 征在于: 步骤1) 的模型训练采用的模型为深度神经网络; 所述深度神经网络包含但不 限于卷积神经网络、 循环神经网络及其相关变种, 所支持 的算法包括但不限于目标检测算法、 车道线识别算法、 语义分割算法。 4.根据权利要求1所述的一种基于隐私数据保护的智能网联汽车数据训练方法, 其特 征在于: 步骤3) 中, 原始数据的关键信息包括但不限于人脸和车牌, 匿名化处理包括但 不限 于打马赛克、 纯色填充、 模糊处 理。 5.根据权利要求1所述的一种基于隐私数据保护的智能网联汽车数据训练方法, 其特 征在于: 步骤2) 中特 征提取所用方法包 含但不限于卷积、 池化、 切片。 6.根据权利要求1所述的一种基于隐私数据保护的智能网联汽车数据训练方法, 其特 征在于: 步骤2) 和步骤3) 在车辆待机状态时将数据上传到云端。 7.根据权利要求1所述的一种基于隐私数据保护的智能网联汽车数据训练方法, 其特 征在于: 步骤1) 中部署至车端的低层特征提取层有多种层数, 每次部署时, 将不同层数的低 层特征提取层同时部署在车端; 步骤5) 在云端训练并更新多个与车端低层特征提取层 对应 的其他特征提取层, 由此 得到多个优化后的模型, 将性能最佳的一个模型同步给 车端。 8.根据权利要求1所述的一种基于隐私数据保护的智能网联汽车数据训练方法, 其特 征在于: 步骤4) 中用于算法迭代更新的模型更新数据集包括但不限于路试数据集、 车端采 集的原始数据集, 其它利用数据增强而得到数据集也包含在内, 包括但不限于对低层次特 征集进行翻转、 旋转、 缩放操作而生成的数据。 9.一种基于隐私数据保护的智能网联汽车数据训练电子设备, 其特征在于: 包括存储 器, 配置为存 储可执行指令; 处理器, 配置为执行存储器中存储的可执行指令, 以实现权利要求1至8中任意一项所权 利 要 求 书 1/2 页 2 CN 114741732 A 2述的一种基于隐私数据保护的智能网联汽车 数据训练方法。 10.一种计算机可读存储介质, 其上存储有计算机程序指令, 其特征在于: 所述计算机 程序指令执行上述权利要求1至8 中任意一项所述的一种基于隐私数据保护的智能网联汽 车数据训练方法。权 利 要 求 书 2/2 页 3 CN 114741732 A 3
专利 一种基于隐私数据保护的智能网联汽车数据训练方法、电子设备及计算机可读存储介质
文档预览
中文文档
8 页
50 下载
1000 浏览
0 评论
0 收藏
3.0分
赞助2.5元下载(无需注册)
温馨提示:本文档共8页,可预览 3 页,如浏览全部内容或当前文档出现乱码,可开通会员下载原始文档
下载文档到电脑,方便使用
赞助2.5元下载
本文档由 SC 于
2024-02-07 12:39:25
上传分享
举报
下载
原文档
(323.5 KB)
分享
友情链接
GB-T 6297-2002 陶瓷原料差热分析方法.pdf
T-ZZB 1589—2020 计算机控制360度机头旋转模板缝纫机.pdf
T-ZZB 1704—2020 氧气用阀门.pdf
桂林市销售燃放烟花爆竹管理条例.pdf
tc260 网络安全标准实践指南 信息系统灾难备份实践指引 2022.pdf
GB-T 5231-2022 加工铜及铜合金牌号和化学成分.pdf
YD T 1730-2024 电信网和互联网安全风险评估规范.pdf
GB 31892-2015 伞类产品安全通用技术条件.pdf
GB-T 42622-2023 增材制造 激光定向能量沉积用钛及钛合金粉末.pdf
DB34-T 2395-2015 涉路工程安全评价规范 安徽省.pdf
GB-T 40211-2021 工业通信网络 网络和系统安全 术语、概念和模型 ISO 62443-1-1-2009.pdf
信通院 封莎 云服务数据安全能力构建与最佳实践.pdf
GB-T 16433-2009 残疾人田径运动员医学和功能分级.pdf
DB42-T 1958-2023 单轨道山地果园运输系统技术规程 湖北省.pdf
绿盟 安全行业大模型SecLLM技术白皮书.pdf
信通院 移动数字广告与互联网反欺诈蓝皮报告.pdf
密码学会 政务信息系统密码应用与安全性评估 工作指南-2020.pdf
GB-T 34471.2-2017 弹性合金 第2部分:恒弹性合金.pdf
GB-T 41837-2022 温泉服务 温泉水质要求.pdf
T-CGCC 7—2017 焙烤食品用糖浆.pdf
1
/
8
评价文档
赞助2.5元 点击下载(323.5 KB)
回到顶部
×
微信扫码支付
2.5
元 自动下载
官方客服微信:siduwenku
支付 完成后 如未跳转 点击这里 下载
站内资源均来自网友分享或网络收集整理,若无意中侵犯到您的权利,敬请联系我们
微信(点击查看客服)
,我们将及时删除相关资源。